Structural Aspects of the Metal-Insulator Transitions in $\mathrm{Ti}_{4} \mathrm{O}_{7}$

M. MAREZIO, D. B. McWHAN, P. D. DERNIER, AND J. P. REMEIKA
Bell Laboratories, Murray Hill, New Jersey 07974

Received April 27, 1972

Abstract

$\mathrm{Ti}_{4} \mathrm{O}_{7}$ has two transitions with decreasing temperature and the structure has been refined in each phase. The triclinic structure (AI) consists of rutile-like layers of TiO_{6} octahedra extending indefinitely in the $a-b$ plane and four octahedra thick along the c axis. The average Ti-O distances for the four independent Ti atoms are 2.006(2), 2.006(2), 2.004(2), and 2.018(2) \AA at $298 \mathrm{~K} ; 2.011(4), 2.000(4), 2.015(4)$, and 2.012(4) \AA at $140 \mathrm{~K} ; 2.043(4), 1.973(4), 2.044(4)$, and $1.996(4) \AA$ at 120 K . At 120 K there is a clear separation into strings of Ti^{3+} or Ti^{4+} ions running parallel to the pseudorutile c axis. In addition the $3+$ sites are paired to form short $\mathrm{Ti}-\mathrm{Ti}$ bonds, whereas the Ti^{4+} atoms are displaced toward one oxygen giving short $\mathrm{Ti}-\mathrm{O}$ distances of $1.776(4)$ and $1.787(4) \AA$ and thus forming a zig-zag chain. In the intermediate phase the interatomic distances are only slightly different from those at 298 K but the thermal factors are anomalously large.

Introduction

$\mathrm{Ti}_{4} \mathrm{O}_{7}$ is a member of the homologous series $\mathrm{Ti}_{n} \mathrm{O}_{2 n-1}(1-3)$. Bartholomew and Frankl found a decrease of 10^{5} in the electrical conductivity at two closely spaced temperatures, ~ 150 and $\sim 125 \mathrm{~K}$ (4). Mulay and Danley observed a drop of about a factor of 4 in the magnetic susceptibility at 150 K (5). These authors measured the variation of the lattice parameters as a function of temperature and found a sharp increase in the unit-cell volume at $\sim 150 \mathrm{~K}$ (6). No discontinuities were observed in the lattice parameters at the lower transition. The extra reflections reported to appear at this transition $(4,6)$ were absent in a recently prepared, pure $\mathrm{Ti}_{4} \mathrm{O}_{7}$ powder sample.

The $\mathrm{Ti}_{4} \mathrm{O}_{7}$ structure consists of rutile-like slabs of TiO_{6} octahedra extending indefinitely in two dimensions and four octahedra thick in the third dimension. The accurate determination of the structure (7) at room temperature revealed from the Ti-O distances that the effective ionic charge of all the titanium atoms is +3.5 . This paper reports the accurate determination of the structure of the two phases stable in the range $150-125 \mathrm{~K}$ and below 125 K , respectively. The refinement of these two structures revealed that the unit cell previously chosen $(3,7)$ was actually A centered. For this reason and for comparative purposes we report again the room temperature structural data.

Crystal Data

Andersson and Jahnberg (3) were able to index on triclinic cells the powder patterns of each member of the homologous series, $\mathrm{Ti}_{n} \mathrm{O}_{2 n-1}$, by recognizing in each pattern a rutile-like substructure. For $\mathrm{Ti}_{4} \mathrm{O}_{7}$ this cell turned out to be an A-centered cell.

Recently Horiuchi et al. (8) reported the crystallography of the isostructural series $\mathrm{V}_{n} \mathrm{O}_{2 n-1}$. They proposed a primitive cell for every member of the series. In the case of $\mathrm{Ti}_{4} \mathrm{O}_{7}$ both cells, Andersson and Jahnberg's and Horiuchi et al.'s, give rise to an identical reduced cell. The matrix relating the two cells is:

$$
\begin{aligned}
& \text { Horiuchi et al. } \begin{array}{c}
\text { Andersson and } \\
\text { Jahnberg } \\
\qquad\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)_{T}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & \frac{5}{2} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)_{T}
\end{array}
\end{aligned}
$$

Since the A-centered cell proposed by Andersson and Jahnberg has interaxial angles closer to 90°, we found it convenient to describe the structure in this cell with an AI space group and 4 formula weights per unit cell.

In order to determine the lattice parameters and the unit cell in each phase of $\mathrm{Ti}_{4} \mathrm{O}_{7}$, powder data were obtained with a Philips Norelco Diffractometer fitted with an Air-Products and

Chemicals Cryotip device. In previous studies as a function of temperature two transitions were observed. At $\sim 150 \mathrm{~K}$ there were discontinuous changes in the lattice parameters and at $\sim 125 \mathrm{~K}$ extra reflections appeared. The powder samples were impure, however, and the extra reflections may have come from $\mathrm{Ti}_{5} \mathrm{O}_{9}$ which has a metalinsulator transition at $\sim 130 \mathrm{~K}$. A single-phase sample of $\mathrm{Ti}_{4} \mathrm{O}_{7}$ was prepared using a previously prepared pure sample of $\mathrm{Ti}_{3} 0_{5}$. This latter compound was made by grinding together in an agate mortar the appropriate amounts of TiH_{2} and TiO_{2}. The mixed powders were pressed at 5 tons in a $\frac{1}{4} \mathrm{in}$. die. The pellet was placed in a platinum boat which was then wrapped in a zirconium foil. The assembly was heated at $600^{\circ} \mathrm{C}$ in an argon atmosphere for 3 hr . Afterwards the temperature was raised to $1000^{\circ} \mathrm{C}$ and held for 24 hr . The $\mathrm{Ti}_{3} \mathrm{O}_{5}$ thus prepared was mixed with the appropriate amount of TiO_{2} and the same procedure followed.
The Bragg angles of 21 well-resolved reflections were obtained at 298,140 and 120 K relative to those of a silicon internal standard. The lattice parameters determined by a least-squares refinement of the data are reported in Table I. They are in good agreement with the values obtained in the previous study. However, no extra reflections were observed below the 125 K transition. The present powder X-ray data show no evidence for a doubling of the volume of the unit cell as was speculated from the previous data taken from impure samples. Long precession photographs were taken using single crystals for the room temperature structure determination. No extra reflections were observed in the low temperature phase. Each of the major axes of the crystal were scanned on the diffractometer, but no extra reflections were observed. There were discontinuous changes in the intensity of many reflections at both the 150 and 125 K transitions. This

TABLE I
Lattice Parameters

	298 K	140 K	120 K
a	$5.593(1)$	$5.590(1)$	$5.591(1)$
b	$7.125(1)$	$7.128(1)$	$7.131(1)$
c	$12.456(3)$	$12.483(2)$	$12.487(2)$
α	$95.02(1)$	$95.03(1)$	$95.00(1)$
β	$95.21(1)$	$95.34(1)$	$95.33(1)$
γ	$108.73(1)$	$108.89(1)$	$108.88(1)$

Fig. 1. The net intensity of the reflection (133) in counts per second is shown versus temperature in degrees Kelvin. The temperatures are estimated from set points on the temperature controller, and therefore are relative only.
shows that the discontinuities in the conductivity are associated with first-order transitions in $\mathrm{Ti}_{4} \mathrm{O}_{7}$ and not due to possible $\mathrm{Ti}_{5} \mathrm{O}_{9}$ impurities as has been suggested (9). The intensity of the $\overline{1} 33$ reflection as a function of temperature is shown in Fig. 1 to illustrate the X-ray evidence for both transitions. One concludes that both transitions are first order involving no change in symmetry but only rearrangements of the atoms within the unit cell.

Experimental

The intensity measurements were taken with a GEXRD-5 X-ray diffractometer. The machine settings and the specimen were the same as reported in $\operatorname{Ref}(7) . \mathrm{Zr}$-filtered $\mathrm{Mo} \mathrm{K} \alpha$ radiation was used. The same reflections with $2 \theta \leqslant 46^{\circ}$ of observed magnitude at room temperature were collected at 140 and 120 K . For each set of intensities the temperature was maintained by blowing a cold stream of nitrogen gas directly on the crystal. A Varian control unit was used to monitor and control the proper gas flow. The intensity of the reflection (133) was a very sensitive
indicator of the range of stability of each of the respective phases as shown in Fig. 1. This reflection was used as a standard for the final set of data collection of the intermediate phase along with a strong reflection (104) as a check of sample orientation and ice buildup. The procedure for collecting intensities was the same for all phases. For each reflection, the approximate angles 2θ, χ, and ϕ were set automatically and then maximized by hand. The integrated intensities were obtained by use of the stationary crystalstationary counter technique where the background was collected $\pm 2^{\circ} 2 \theta$ off the peak maximum. The total number of reflections measured at 140 and 120 K was 350 and the numbers observed were 331 and 335, respectively. The Lorentz, polarization, and absorption corrections were applied in order to convert the integrated intensities into structure factors. All Friedel pairs in the equatorial zone were also measured by hand at both temperatures and within experimental limits no differences between ($h k l$) and ($h \bar{k} \bar{l}$) were observed. Most of these pairs had quite weak intensity and were therefore a sensitive indicator for the presence of the center of symmetry.

Refinement

In the refinement of the room temperature phase a pseudo- A-centered relationship was noted in the observed intensities. However, the refinement appeared to converge to a primitive cell. In refining the structure of the low temperature phase it became apparent that the true cell was A centered and that a false minimum had been reached in the earlier refinement at room temperature. Upon further least-squares refinement of the room temperature data the true minimum was reached with an A-centered cell which gave a lower set of standard deviations and conventional R and $w R$ factors.

For each refinement the starting values for the positional and thermal parameters were the average A-centered related values at room temperature reported in Ref. (7). The f curves for neutral titanium and oxygen given by Cromer and Waber (10) were used along with the values of Δf^{\prime} and $\Delta f^{\prime \prime}$ reported by Cromer (11) in the least-squares refinement program ORFLS. Conve:gence was obtained after the first four sycles of refinement and anisotropic temperature factors were introduced during the last four cycles. The final positional parameters and the conventional R and $w R$ factors are given in Table

TABLE II
Final Positional Parameters

	298 K		140 K
$\mathrm{Ti}(1) x$	$0.21617(8)$	120 K	
y	$0.15282(7)$	$0.156(2)$	$0.2367(2)$
z	$0.06282(3)$	$0.06404(9)$	$0.1634(2)$
$\mathrm{Ti}(2) x$	$0.21852(8)$	$0.2172(2)$	$0.2129(9)$
y	$0.65258(7)$	$0.6549(2)$	$0.6714(2)$
z	$0.06618(3)$	$0.06596(9)$	$0.06558(9)$
$\mathrm{Ti}(3) x$	$0.68340(7)$	$0.6816(2)$	$0.6693(2)$
y	$0.44002(6)$	$0.4424(2)$	$0.4389(2)$
z	$0.20115(3)$	$0.20048(9)$	$0.19376(9)$
$\mathrm{Ti}(4) x$	$0.68858(7)$	$0.6875(2)$	$0.7057(2)$
y	$0.94231(6)$	$0.9425(2)$	$0.9492(2)$
z	$0.20136(3)$	$0.19988(9)$	$0.20440(8)$
$\mathrm{O}(1) x$	$0.1073(3)$	$0.1077(7)$	$0.1080(7)$
y	$0.8627(3)$	$0.8618(6)$	$0.8616(6)$
z	$0.0151(1)$	$0.0156(3)$	$0.0165(3)$
$\mathrm{O}(2) x$	$0.5870(3)$	$0.5871(8)$	$0.5803(7)$
y	$0.7922(3)$	$0.7925(6)$	$0.7967(6)$
z	$0.0577(1)$	$0.0567(3)$	$0.0618(3)$
$\mathrm{O}(3) x$	$0.858(3)$	$0.8538(7)$	$0.8573(7)$
y	$0.4964(3)$	$0.4967(6)$	$0.4961(6)$
z	$0.0811(1)$	$0.0800(3)$	$0.0742(3)$
$\mathrm{O}(4) x$	$0.3281(3)$	$0.3233(7)$	$0.3159(7)$
y	$0.4385(3)$	$0.4400(6)$	$0.4455(6)$
z	$0.1387(1)$	$0.1395(3)$	$0.1423(3)$
$\mathrm{O}(5) x$	$0.5265(3)$	$0.5280(7)$	$0.5283(6)$
y	$0.1449(3)$	$0.1425(6)$	$0.1362(6)$
z	$0.1639(1)$	$0.1659(3)$	$0.1691(3)$
$\mathrm{O}(6) x$	$0.0377(3)$	$0.0388(7)$	$0.0373(7)$
y	$0.0700(3)$	$0.0691(6)$	$0.0706(6)$
z	$0.1981(1)$	$0.1972(3)$	$0.1980(3)$
$\mathrm{O}(7) x$	$0.2946(3)$	$0.2925(7)$	$0.2849(7)$
y	$0.7905(3)$	$0.7854(6)$	$0.7794(6)$
z	$0.2238(1)$	$0.2234(3)$	$0.2224(3)$
R factor	0.023	0.021	0.019
$w R$ factor	0.039	0.030	0.029

TABLE III
Final Thermal Parameters ($\times 10^{4}$)

	298 K	140 K	120 K
$\mathrm{Ti}(1) \beta_{11}$	$42(1)$	$61(5)$	$38(5)$
β_{22}	$24(1)$	$28(3)$	$17(3)$
β_{33}	$7.6(3)$	$6.4(8)$	$3.9(8)$
β_{12}	$10.2(8)$	$21(3)$	$19(2)$
β_{13}	$3.3(4)$	$7(1)$	$4(1)$
β_{23}	$1.7(4)$	$3(1)$	$0(1)$
$\mathrm{Ti}(2) \beta_{11}$	$40(1)$	$54(5)$	$35(4)$
β_{22}	$23.0(9)$	$28(3)$	$15(3)$
β_{33}	$7.3(3)$	$5.7(8)$	$5.0(8)$
β_{12}	$10.2(8)$	$10(3)$	$13(3)$
β_{13}	$2.8(4)$	$3(1)$	$3(1)$
β_{23}	$1.4(3)$	$3(1)$	$-1(1)$

TABLE III-(continued)

	298K	140K	120K
Ti(3) β_{11}	42(1)	54(5)	28(5)
β_{22}	21(1)	25(4)	16(3)
β_{33}	7.5(2)	10.1(9)	4.9 (8)
β_{12}	9.1(7)	9(3)	9(3)
β_{13}	6.0(4)	9(1)	8(1)
β_{23}	2.1(3)	5(1)	3(1)
$\mathrm{Ti}(4) \beta_{11}$	43(1)	59(5)	23(4)
β_{22}	25(1)	25(4)	18(3)
β_{33}	8.5(2)	6.9(8)	$5.2(8)$
β_{12}	11.5(8)	17(3)	12(2)
β_{13}	5.0(3)	1(1)	4(2)
β_{23}	2.3(3)	2(1)	2(1)
O(1) β_{11}	50(4)	50(12)	58(13)
β_{22}	32(3)	53(9)	20(9)
β_{33}	11(1)	16(3)	10(3)
β_{12}	14(3)	17(9)	14(9)
β_{13}	2(2)	6(5)	10(4)
β_{23}	3(1)	-2(4)	-4(4)
$O(2) \beta_{11}$	47(4)	76(13)	44(12)
β_{22}	34(3)	23(8)	17(8)
β_{33}	9.3(8)	15(2)	13(3)
β_{12}	8(3)	14(8)	20(8)
β_{13}	5(1)	-5(5)	9(5)
β_{23}	2(1)	2(3)	-3(4)
O(3) β_{11}	55(4)	51(13)	50(12)
β_{22}	39(3)	37(9)	35(9)
β_{33}	9.2(8)	16(2)	10(2)
β_{12}	11(3)	-2(9)	18(8)
β_{13}	10(2)	-1(5)	9(5)
β_{23}	3(1)	3(4)	-1(4)
$\mathrm{O}(4) \beta_{11}$	53(4)	73,14)	70(13)
β_{22}	26(3)	39(8)	16(8)
β_{33}	$7.6(8)$	9(3)	6(2)
β_{12}	12(3)	1(8)	23(8)
β_{13}	2(2)	-5(5)	5(4)
β_{23}	0 (1)	4(4)	-4(4)
$\mathrm{O}(5) \beta_{11}$	47(4)	37(13)	62(13)
β_{22}	29(3)	52(9)	18(9)
β_{33}	9.4(9)	13(3)	6(3)
β_{12}	15(3)	5(9)	-2(9)
β_{13}	2(1)	-1(5)	6(5)
β_{23}	1(1)	6(4)	-3(4)
$\mathrm{O}(6) \beta_{11}$	37(4)	76(14)	63(13)
β_{22}	36(3)	37(8)	39(9)
β_{33}	8.7(8)	12(3)	10(2)
β_{12}	11(3)	20(8)	18(9)
β_{13}	4(1)	4(5)	6(5)
β_{23}	2(1)	1(4)	2(4)
O(7) β_{11}	46(4)	58(13)	38(13)
β_{22}	30(3)	33(8)	34(9)
β_{33}	8.4(8)	10(3)	10(3)
β_{12}	14(3)	16(8)	7(9)
β_{13}	1(1)	-1(4)	9(4)
β_{23}	2(1)	-3(4)	8(4)

TABLE IV
Interatomic Distances (\AA) in Ti-Octahedra ${ }^{a}$

	298K	140K	120K
$\mathrm{Ti}(1)-\mathrm{O}(1)$	1.940(2)	1.949(4)	2.057(4)
-O(1)	1.977(2)	2.004(4)	2.058(4)
-O(2)	1.935(2)	1.936(4)	$1.992(4)$
-O(4)	2.041(2)	$2.030(4)$	2.030 (4)
-O(5)	2.070(2)	$2.088(4)$	2.037(4)
-O(6)	2.071(2)	2.058(4)	2.086(4)
Average	2.006	2.011	2.043
$\mathrm{O}(5)-\mathrm{O}(6) e^{1 / 3}$	2.694(2)	2.686(6)	2.696(5)
$\mathrm{O}(5)-\mathrm{O}(4) e^{1 / 3}$	2.693(2)	$2.745(6)$	$2.853(6)$
$\mathrm{O}(5)-\mathrm{O}(2)$	2.883(3)	$2.904(5)$	3.002(5)
$\mathrm{O}(5)-\mathrm{O}(1)$	2.918(2)	2.919(5)	2.920 (5)
$\mathrm{O}(1)-\mathrm{O}(6)$	2.834(3)	2.839(6)	2.854(5)
$0(1)-0(4)$	3.048(2)	3.038(5)	3.059(5)
$\mathrm{O}(1)-\mathrm{O}(2)$	2.896(3)	$2.893(6)$	$2.952(6)$
$\mathrm{O}(1)-\mathrm{O}(1) e^{1 / 1}$	$2.639(4)$	2.659(9)	$2.667(8)$
$\mathrm{O}(2)-\mathrm{O}(4)$	2.987(3)	3.009(6)	$3.158(6)$
$\mathrm{O}(2)-\mathrm{O}(1)$	2.786(2)	2.784(5)	2.813(5)
$\mathrm{O}(5)-\mathrm{O}(4)$	2.811(2)	2.804(6)	2.808(5)
$\mathrm{O}(5)-\mathrm{O}(1)$	2.734(3)	2.723(6)	2.733(6)
$\mathrm{Ti}(2)-\mathrm{O}(1)$	1.931(2)	1.902(4)	1.776(4)
-O(2)	1.997(2)	2.001(4)	1.964(4)
-O(3)	2.010(2)	2.011(4)	$1.995(4)$
-O(3)	1.976(2)	1.972(4)	$1.958(4)$
-O(4)	2.064(2)	2.068(5)	$2.148(4)$
-O(7)	2.061(2)	2.044(4)	$1.995(4)$
Averagc	2.006	2.000	1.973
$\mathrm{O}(7)-\mathrm{O}(1)$	2.866(2)	2.864(5)	2.845(5)
$\mathrm{O}(7)-\mathrm{O}(2) e^{2 / 4}$	2.749(2)	2.765(6)	2.700(5)
$\mathrm{O}(7)-\mathrm{O}(3)$	2.972(2)	2.953(5)	$2.936(5)$
$\mathrm{O}(7)-\mathrm{O}(4) e^{2 / 4}$	2.706(2)	2.654(6)	2.566(6)
$\mathrm{O}(3)-\mathrm{O}(1)$	2.806(3)	2.806(6)	2.772(6)
$\mathrm{O}(3)-\mathrm{O}(2)$	2.948(2)	2.924(5)	2.921(5)
$\mathrm{O}(3)-\mathrm{O}(3) e^{2 / 2}$	2.691(3)	2.691(8)	2.547(7)
$\mathrm{O}(3)-\mathrm{O}(4)$	2.965(2)	2.949(6)	2.897(5)
$\mathrm{O}(3)-\mathrm{O}(1)$	2.774(2)	2.760(5)	$2.725(5)$
$\mathrm{O}(3)-\mathrm{O}(4)$	2.841(2)	2.825(6)	2.770(6)
$\mathrm{O}(2)-\mathrm{O}(1)$	2.896(2)	2.887(6)	2.840(6)
$\mathrm{O}(2)-\mathrm{O}(4)$	2.798(2)	2.810(5)	2.791(5)
$\mathrm{Ti}(3)-\mathrm{O}(5)$	$2.156(2)$	$2.146(4)$	2.138(4)
-O(6)	1.935(2)	1.952(4)	2.049(4)
-O(7)	2.022(2)	2.039(4)	2.109(4)
O(5)	1.994(2)	$2.018(4)$	2.029(4)
$\mathrm{O}(4)$	2.064(2)	2.070(4)	2.037(4)
$\mathrm{O}(3)$	1.855(2)	1.862(4)	1.903(4)
Average	2.004	2.015	2.044
$\mathrm{O}(6)-\mathrm{O}(5) e^{3 / 1}$	2.694(2)	2.686(6)	2.696(5)
$\mathrm{O}(6)-\mathrm{O}(7)$	2.829(3)	2.845(7)	2.866(7)
$\mathrm{O}(6)-\mathrm{O}(5)$	2.911(2)	2.898(5)	$2.896(5)$
$\mathrm{O}(6)-\mathrm{O}(3)$	2.872(2)	$2.900(5)$	$2.962(5)$
$\mathrm{O}(4)-\mathrm{O}(5) f^{3 / 4}$	2.695(2)	$2.670(5)$	$2.613(5)$
$\mathrm{O}(4)-\mathrm{O}(7) f^{3 / 4}$	$2.695(2)$	$2.716(5)$	2.752(5)
$\mathrm{O}(4)-\mathrm{O}(5) e^{1 / 3}$	$2.693(3)$	2.745 (6)	2.853(6)

TABLE IV--(continued)

	298 K	140 K	120 K
$\mathrm{O}(4)-\mathrm{O}(3)$	$3.008(2)$	$3.033(6)$	$3.138(6)$
$\mathrm{O}(5)-\mathrm{O}(7) f^{3 / 4}$	$2.649(2)$	$2.657(5)$	$2.644(5)$
$\mathrm{O}(5)-\mathrm{O}(5) e^{3 / 3}$	$2.601(3)$	$2.594(8)$	$2.588(7)$
$\mathrm{O}(3)-\mathrm{O}(7)$	$3.075(2)$	$3.103(6)$	$3.184(6)$
$\mathrm{O}(3)-\mathrm{O}(5)$	$2.926(2)$	$2.950(5)$	$3.042(5)$
$\mathrm{Ti}(4)-\mathrm{O}(4)$	$2.118(2)$	$2.117(4)$	$2.023(4)$
$-\mathrm{O}(2)$	$1.939(2)$	$1.934(4)$	$1.945(4)$
$-\mathrm{O}(7)$	$1.995(2)$	$1.985(4)$	$1.950(4)$
$-\mathrm{O}(7)$	$2.176(2)$	$2.190(4)$	$2.314(4)$
$-\mathrm{O}(6)$	$1.876(2)$	$1.882(4)$	$1.787(4)$
$-\mathrm{O}(5)$	$2.001(2)$	$1.967(4)$	$1.958(4)$
Average	2.018	2.012	1.996
$\mathrm{O}(4)-\mathrm{O}(7) e^{2 / 4}$	$2.706(2)$	$2.654(6)$	$2.566(5)$
$\mathrm{O}(4)-\mathrm{O}(7) f^{3 / 4}$	$2.695(2)$	$2.716(5)$	$2.752(5)$
$\mathrm{O}(4)-\mathrm{O}(6)$	$3.001(2)$	$2.993(6)$	$2.918(5)$
$\mathrm{O}(4)-\mathrm{O}(5) f^{3 / 4}$	$2.695(2)$	$2.670(5)$	$2.613(5)$
$\mathrm{O}(2)-\mathrm{O}(7)$	$2.897(3)$	$2.909(5)$	$2.875(5)$
$\mathrm{O}(2)-\mathrm{O}(7) e^{2 / 4}$	$2.749(2)$	$2.765(6)$	$2.700(5)$
$\mathrm{O}(2)-\mathrm{O}(6)$	$2.954(2)$	$2.947(5)$	$2.936(5)$
$\mathrm{O}(2)-\mathrm{O}(5)$	$2.868(3)$	$2.866(7)$	$2.775(6)$
$\mathrm{O}(7)-\mathrm{O}(7) e^{4 / 4}$	$2.584(3)$	$2.571(8)$	$2.614(8)$
$\mathrm{O}(7)-\mathrm{O}(5) f^{3 / 4}$	$2.649(2)$	$2.657(5)$	$2.644(5)$
$\mathrm{O}(6)-\mathrm{O}(7)$	$2.948(2)$	$2.923(5)$	$2.884(5)$
$\mathrm{O}(6)-\mathrm{O}(5)$	$3.072(2)$	$3.062(6)$	$3.024(6)$

${ }^{a} e^{1 / 3}$ or $f^{5 / 8}$ next to an $\mathrm{O}-\mathrm{O}$ distance indicate that the distance is either a shared edge or part of a shared face, between $\mathrm{Ti}(1)-\mathrm{Ti}(3)$ and $\mathrm{Ti}(5)-\mathrm{Ti}(8)$, respectively.
II. The final thermal parameters are reported in Table III. These values together with the lattice parameters reported in Table I were used as input to the program ORFFE which calculated the interatomic distances and thermal data reported in Tables IV-VII. The observed and calculated structure factors are available. ${ }^{1}$

Discussion

The new set of interatomic distances at room temperature are given in Table IV. The individual $\mathrm{Ti}(1)-\mathrm{O}$ distances are the same as the average of those reported for the $\mathrm{Ti}(1)$ - and $\mathrm{Ti}(3)$-octa-

[^0]TABLE V
Ti-Ti Distances (\AA)

	298K	140K	120K
Ti(1)-Ti(1) ${ }^{\text {a }}$ edge	2.895(1)	2.926(2)	3.133(2)
$-\mathrm{Ti}(3)^{a}$	3.020(1)	2.990(2)	2.802(2)
-Ti(2) ${ }^{\text {a }}$ corner	3.604(1)	3.609(1)	$3.550(2)$
$-\mathrm{Ti}(2)^{a}$	3.502(1)	3.491(1)	3.461(1)
$-\mathrm{Ti}(2)^{\text {a }}$	3.572(1)	3.574(3)	3.465(3)
$-\mathrm{Ti}(2)^{a}$	3.553(1)	3.554(3)	3.671(3)
$-\mathrm{Ti}(4)^{a}$	3.793(1)	3.783(2)	3.784(2)
$-\mathrm{Ti}(4)^{a}$	3.530(1)	3.526(2)	3.534(2)
$-\mathrm{Ti}(4)^{a}$	3.425(1)	3.434(2)	3.498(2)
$-\mathrm{Ti}(3)^{b}$ edge	$3.111(1)$	3.124(2)	3.159(2)
-Ti(4) ${ }^{\text {b }}$ corner	3.806(1)	3.795(2)	3.699(2)
Ti(2)-Ti(2) ${ }^{\text {a }}$ edge	2.942(1)	2.937(2)	3.023(2)
$-\mathrm{Ti}(4)^{\text {a }}$	3.019(1)	$3.000(2)$	3.083(2)
-Ti(1) ${ }^{\text {a }}$ corner	3.604(1)	$3.609(1)$	$3.550(2)$
$-\mathrm{Ti}(1)^{a}$	3.502(1)	3.481(1)	3.461(1)
$-\mathrm{Ti}(1)^{a}$	3.572(1)	3.574(3)	3.465(3)
$-\mathrm{Ti}(1)^{\text {a }}$	3.553(1)	3.554(3)	3.671(3)
$-\mathrm{Ti}(3)^{a}$	3.751(1)	3.746(2)	3.778(1)
$-\mathrm{Ti}(3)^{a}$	3.538(1)	3.539(2)	3.557(1)
$-\mathrm{Ti}(3)^{a}$	3.464(1)	3.473(2)	3.439(2)
$-\mathrm{Ti}(4)^{\text {b }}$ edge	3.067(1)	3.101(2)	3.104(1)
-Ti(3) ${ }^{\text {b }}$ corner	3.788(1)	3.773(2)	3.765(2)
Ti(3)-Ti(1) ${ }^{\text {a }}$ edge	3.020(1)	2.990(2)	2.802(2)
$-\mathrm{Ti}(2)^{\text {a }}$ corner	3.751(1)	$3.746(2)$	3.778 (1)
$-\mathrm{Ti}(2)^{a}$	3.538(1)	3.539(2)	3.557(1)
$-\mathrm{Ti}(2)^{a}$	3.464(1)	3.473(2)	3.493(2)
$-\mathrm{Ti}(4)^{a}$	3.556(1)	3.573(2)	3.576(2)
$-\mathrm{Ti}(4)^{a}$	3.569(1)	3.555(2)	3.568(2)
$-\mathrm{Ti}(4)^{b}$ face	2.811(1)	2.806(1)	2.838(1)
-Ti(4) ${ }^{\text {b }}$ corner	3.417(1)	3.434(1)	3.414(1)
$-\mathrm{Ti}(3)^{\text {b }}$ edge	3.237(1)	$3.261(2)$	3.267(1)
$-\mathrm{Ti}(1)^{b}$	3.111(1)	3.124(2)	3.159(2)
$-\mathrm{Ti}(2)^{\text {b }}$ corner	3.788(1)	3.773(2)	3.765(2)
Ti(4)-Ti(2) ${ }^{\text {a }}$ edge	3.019(1)	3.000(2)	3.083(2)
-Ti(1) ${ }^{\text {a }}$ corner	3.793(1)	3.783(2)	3.784(2)
$-\mathrm{Ti}(1)^{a}$	3.530(1)	3.526(2)	3.534(2)
$-\mathrm{Ti}(1)^{a}$	$3.425(1)$	3.434(2)	3.498(2)
$-\mathrm{Ti}(3)^{a}$	3.556(1)	3.573(2)	3.576(2)
$-\mathrm{Ti}(3)^{a}$	3.569(1)	3.555(2)	3.568(2)
Ti(3) ${ }^{\text {b }}$ face	3.811(1)	2.806(1)	2.838(1)
-Ti(3) ${ }^{\text {b }}$ corner	3.417(1)	3.434(1)	3.414(1)
$-\mathrm{Ti}(4)^{\text {b }}$ edge	3.280 (1)	3.295(2)	$3.389(2)$
$-\mathrm{Ti}(2)^{\text {b }}$	3.067(1)	$3.101(1)$	3.104(2)
-Ti(1) ${ }^{\text {b }}$ corner	3.806(1)	3.795(2)	3.699(2)

[^1]hedron in (7). In similar fashion the other pairs of A-centered related octahedra are $\mathrm{Ti}(2)$ and $\mathrm{Ti}(4)$, $\mathrm{Ti}(5)$ and $\mathrm{Ti}(7)$, and $\mathrm{Ti}(6)$ and $\mathrm{Ti}(8)$. The pairs of A-centered related oxygen atoms are $\mathbf{O}(1)$ and $\mathrm{O}(14), \mathrm{O}(2)$ and $\mathrm{O}(13), \mathrm{O}(3)$ and $\mathrm{O}(12)$, etc.

TABLE VI
Root Mean Square Values

	298 K	140 K	120 K
$\mathrm{Ti}(1) \mathrm{r}_{1}$	$0.074(1)$	$0.063(5)$	$0.029(11)$
r_{2}	$0.074(1)$	$0.074(6)$	$0.061(6)$
r_{3}	$0.079(1)$	$0.095(4)$	$0.078(4)$
$\mathrm{Ti}(2) \mathrm{r}_{1}$	$0.072(1)$	$0.065(5)$	$0.042(8)$
r_{2}	$0.074(1)$	$0.080(5)$	$0.068(5)$
r_{3}	$0.076(1)$	$0.090(4)$	$0.072(4)$
$\mathrm{Ti}(3) \mathrm{r}_{1}$	$0.066(1)$	$0.066(5)$	$0.037(7)$
r_{2}	$0.070(1)$	$0.083(5)$	$0.058(6)$
r_{3}	$0.084(1)$	$0.098(4)$	$0.076(5)$
$\mathrm{Ti}(4) \mathrm{r}_{1}$	$0.072(1)$	$0.066(6)$	$0.046(7)$
r_{2}	$0.074(1)$	$0.074(5)$	$0.061(6)$
r_{3}	$0.084(1)$	$0.092(4)$	$0.069(5)$
$\mathrm{O}(1) \mathrm{r}_{1}$	$0.083(4)$	$0.081(11)$	$0.046(21)$
r_{2}	$0.085(4)$	$0.100(10)$	$0.083(11)$
r_{3}	$0.092(4)$	$0.124(10)$	$0.107(9)$
$\mathrm{O}(2) \mathrm{r}_{1}$	$0.076(4)$	$0.072(13)$	$0.023(36)$
r_{2}	$0.085(4)$	$0.091(11)$	$0.081(6)$
r_{3}	$0.095(4)$	$0.121(8)$	$0.107(10)$
$\mathrm{O}(3) \mathrm{r}_{1}$	$0.069(4)$	$0.073(12)$	$0.065(15)$
r_{2}	$0.093(4)$	$0.107(11)$	$0.089(10)$
r_{3}	$0.101(4)$	$0.118(9)$	$0.100(11)$
$\mathrm{O}(4) \mathrm{r}_{1}$	$0.073(4)$	$0.075(12)$	$0.024(39)$
r_{2}	$0.080(4)$	$0.086(11)$	$0.082(12)$
r_{3}	$0.087(4)$	$0.123(9)$	$0.099(9)$
$\mathrm{O}(5) \mathrm{r}_{1}$	$0.076(4)$	$0.070(14)$	$0.053(18)$
r_{2}	$0.082(4)$	$0.096(13)$	$0.070(15)$
r_{3}	$0.087(4)$	$0.119(9)$	$0.108(10)$
$\mathrm{O}(6) \mathrm{r}_{1}$	$0.070(4)$	$0.088(11)$	$0.084(12)$
r_{2}	$0.082(4)$	$0.098(11)$	$0.095(11)$
r_{3}	$0.093(4)$	$0.103(9)$	$0.096(10)$
$\mathrm{O}(7) \mathrm{r}_{1}$	$0.074(4)$	$0.074(12)$	$0.056(17)$
r_{2}	$0.083(4)$	$0.087(13)$	$0.087(12)$
r_{3}	$0.085(4)$	$0.102(11)$	$0.100(10)$

The structure of $\mathrm{Ti}_{4} \mathrm{O}_{7}$ consists of strings of edge-sharing octahedra running parallel to the pseudorutile c axis and truncated every four octahedra by the crystallographic shear planes, where the octahedra share faces. The pseudorutile blocks are bounded by these shear planes which run parallel to the $a-b$ triclinic plane, as shown in Fig. 2. It should be pointed out that the crystallographic shear planes do not imply any shearing of one entire block with respect to the next. As in rutile, in every member of the homologous series $\mathrm{Ti}_{n} \mathrm{O}_{2 n-1}$ the oxygen array is hexagonal closepacked. At the crystallographic shear plane the titanium atoms fill the octahedral positions of the rutile cells at ($\frac{1}{2} 00$) rather than filling the positions at (000). In $\mathrm{Ti}_{4} \mathrm{O}_{7}$ there are four

TABLE VII
Root Mean Square Components in the
Direction of the Pseudorutile \boldsymbol{c}-axis

	298 K	140 K	120 K
$\mathrm{Ti}(1)$	0.077	0.093	0.074
$\mathrm{Ti}(2)$	0.075	0.080	0.067
$\mathrm{Ti}(3)$	0.079	0.092	0.073
$\mathrm{Ti}(4)$	0.081	0.085	0.067

Root mean square components in the			
Ti(1)	0.076	0.071	0.063
Ti(2)	0.075	0.069	0.069
Ti(3)	0.072	0.075	0.053
$\mathrm{Ti}(4)$	0.077	0.070	0.061

Root mean square components in the direction of Ti(3)-Ti(4) vector

$\mathrm{Ti}(3)$	0.069	0.81	0.045
$\mathrm{Ti}(4)$	0.072	0.83	0.047

crystallographically independent Ti atoms, two of which, $\mathrm{Ti}(1), \mathrm{Ti}(2)$, are inside the blocks and two, $\mathrm{Ti}(3), \mathrm{Ti}(4)$, at the end of the blocks. At room temperature the average $\mathrm{Ti}-\mathrm{O}$ distances are $\mathrm{Ti}(1)-\mathrm{O}=2.006 \AA ; \mathrm{Ti}(2)-\mathrm{O}=2.006 \AA ; \mathrm{Ti}(3)-\mathrm{O}$ $=2.004 \AA$; and $\mathrm{Ti}(4)-\mathrm{O}=2.018 \AA$, the overall average being $2.008 \AA$. By taking an average of the Shannon and Prewitt radii (12) for 3- and 4 -coordinated O^{-2} and for 6 -coordinated Ti^{3+} and Ti^{4+}, one obtains a calculated distance of $2.01 \AA$. One should note that the Ti(4)-O average distance is larger than the other three distances by approximately six times the standard deviation. The oxygen atoms are either 3 - or 4 -coordinated. $O(1), O(2)$, and $O(3)$, which are inside the rutile blocks are 3 -coordinated. $O(4), O(5)$, and $O(7)$, which are shared between two blocks, are 4 -coordinated. $\mathrm{O}(6)$ is 3 -coordinated, but is shared between blocks. Inside the rutile blocks the shortest $\mathrm{Ti}-\mathrm{Ti}$ distances are across the shared octahedral edges. In rutile TiO_{2} (13) this distance is $2.958 \AA$, whereas in $\mathrm{Ti}_{4} \mathrm{O}_{7}$ it varies between 3.020 and $2.895 \AA$, the average being $2.986 \AA$. This larger average Ti-Ti distance is a consequence of the larger effective radius of $\mathrm{Ti}^{3.5+}$. Octahedra between blocks share faces, edges, and corners. The shortest $\mathrm{Ti}-\mathrm{Ti}$ distance between blocks, namely across the shared octahedral faces, is $2.811 \AA$. The Ti-Ti distances across the shared octahedral edges between blocks range from 3.067 to $3.280 \AA$. In $\mathrm{Ti}_{2} \mathrm{O}_{3}(14)$ the $\mathrm{Ti}-\mathrm{Ti}$ distance across the shared octahedral face and across the shared octahedral edge are 2.592 and $2.990 \AA$, respectively.

Fig. 2. A projection of the $\mathrm{Ti}_{4} \mathrm{O}_{7}$ structure looking down the triclinic a axis. The shaded set of octahedra runs roughly parallel to the pseudorutile c axis.

The final positional parameters of $\mathrm{Ti}_{4} \mathrm{O}_{7}$ at 140 K , given in Table II, show that only small displacements occur at the 150 K transition. The average of these displacements is approximately $0.015 \AA$. For the individual octahedra the average $\mathrm{Ti}-\mathrm{Odistances}$ are: $\mathrm{Ti}(1)-\mathrm{O}=2.011 \AA ; \mathrm{Ti}(2)-\mathrm{O}=$ $2.000 \AA ; \mathrm{Ti}(3)-\mathrm{O}=2.015 \AA$; and $\mathrm{Ti}(4)-\mathrm{O}=2.012$ \AA. With respect to the equivalent distances at room temperature the $\mathrm{Ti}(1)$-and $\mathrm{Ti}(3)$-octahedra expand, whereas the $\mathrm{Ti}(2)$ - and $\mathrm{Ti}(4)$-octahedra contract. It now appears that the $\mathrm{Ti}(2)$ sites accommodate more Ti^{4+} than the other three sites. The overall average Ti-O distance is 2.009 as compared to $2.008 \AA$ at room temperature. In keeping with this increase the unit-cell volume expands $\sim 0.4 \%$ at the 150 K transition (6). All Ti-Ti distances across shared octahedral edges inside a rutile block decrease slightly, except the $\mathrm{Ti}(1)-\mathrm{Ti}(1)$ distance which increases from 2.895 to $2.926 \AA$. The Ti-Ti distances across shared octahedral edges between rutile blocks increase, whereas the $\mathrm{Ti}(3)-\mathrm{Ti}(4)$ distance across the shared octahedral face decreases from 2.811 to $2.806 \AA$.
As can be seen from Table II the positional parameters of the phase stable below the 125 K
transition are quite different from either the 298 K phase or the 140 K one. The displacements of the titanium atoms are about a factor of 10 larger than the displacements of the oxygen atoms. The displacements of the titanium atoms with respect to the 298 K phase are about the same magnitude larger than the displacements of titanium atoms at the 150 K transition. For the individual octahedra the average $\mathrm{Ti}-\mathrm{O}$ distances are: $\mathrm{Ti}(1)-\mathrm{O}=2.043 \AA ; \mathrm{Ti}(2)-\mathrm{O}=1.973 ; \mathrm{Ti}(3)-$ $\mathrm{O}=2.044 \AA$; and $\mathrm{Ti}(4)-\mathrm{O}=1.996 \AA$, the overall average being $2.014 \AA$. It is readily seen that in this phase the effective charge of $\mathrm{Ti}(1)$ and $\mathrm{Ti}(3)$ is $3+$, whereas the effective charge of $\mathrm{Ti}(2)$ and Ti(4) is $4+$. From the Shannon and Prewitt (12) ionic radii the calculated $\mathrm{Ti}-\mathrm{O}$ distances are 2.04 and 1.98 for Ti^{3+} and Ti^{4+}, respectively. This is in excellent agreement with our experimental values. It is clear from Table IV that Ti(2) and Ti(4) have moved away from the center of the octahedron, along a perpendicular direction to the pseudorutile c axis, considerably more than $\mathrm{Ti}(1)$ and $\mathrm{Ti}(3)$. Consequently at 120 K the $\mathrm{Ti}(1)$ and $\mathrm{Ti}(3)$ octahedra are less distorted than the $\mathrm{Ti}(2)$ and $\mathrm{Ti}(4)$ octahedra, whereas at 298 and

150 K the $\mathrm{Ti}(1)$ and $\mathrm{Ti}(2)$ octahedra are less distorted. The $\mathrm{Ti}(1)-\mathrm{Ti}(3)$ distance drops from $3.020 \AA$ at 298 K to $2.990 \AA$ at 140 K and to $2.802 \AA$ at 120 K . In contrast, all the other Ti-Ti distances across shared octahedral edges inside rutile blocks increase considerably. As can be seen from Fig. 3, the $\mathrm{Ti}(1), \mathrm{Ti}(3)$ chains along the pseudorutile c axis consist of paired atoms with an effective charge of $3+$, whereas the $\mathrm{Ti}(2), \mathrm{Ti}(4)$ chains are unpaired and zigzag along the pseudorutile c axis. The zigzag arrangement is due to the displacements of the $\mathrm{Ti}(2)$ and $\mathrm{Ti}(4)$ atoms away from the octahedral centers along a direction perpendicular to the pseudorutile c axis. The $\mathrm{Ti}(3)-\mathrm{Ti}(4)$ distance across the octahedral face decreases from $2.811 \AA$ at 298 K to $2.806 \AA$ at 140 K and increases to $2.838 \AA$ at 120 K . As mentioned previously the $\mathrm{Ti}(3)$ and $\mathrm{Ti}(4)$ atoms are not paired across the shared octahedral face at 298 K and they have moved even further apart at 120 K .

Fig. 3. At left are sheets of titanium ions in the $\mathrm{Ti}_{4} \mathrm{O}_{7}$ structure at 298 K . The sheets of ions contain the pseudorutile directions [001] and [110] running vertically and horizontally, respectively. Each plane section is truncated by the shear planes as represented by the wavy lines while the various shadings indicate differences in the relative heights of each section. The shear planes intersect the plane of the paper at an angle of 64°. The outlined section is derived from the rutile cell shown in the center with the symbol " X " representing an empty site. The figure on the right represents equivalent sheets of titanium ions in the structure stable below 125 K .

There are marked changes in the thermal parameters among the three phases with those of the 140 K phase being anomalous (see Tables III, VI, and VII). At 298 K the vibration of the titanium atoms inside the rutile blocks, $\mathrm{Ti}(1)$ and $\mathrm{Ti}(2)$, is nearly isotropic. The vibration of titanium atoms at the ends of the blocks, $\mathrm{Ti}(3)$ and $\mathrm{Ti}(4)$, is anisotropic with the smallest component directed toward the shared octahedral face. The largest component is directed toward the empty site resulting from the crystallographic shear plane. The thermal vibration of all the oxygen atoms is anisotropic. As one would expect the anistropy is larger for the 3 -coordinated oxygen atoms than for the 4 -coordinated ones. In contrast to the phase at 298 K , the thermal vibrations of all the titanium atoms at 140 K are anisotropic and anomalously large. Qualitatively this is true also for the oxygen atoms, but unfortunately for these atoms the standard deviations at 140 K are too large to draw any unambiguous conclusion.
The magnitude of the ellipsoids are about the same for all four titaniums. One would expect the rms thermal displacements to decrease markedly with decreasing temperature, but in fact two of the principle axes of the thermal ellipsoids are larger at 140 K than their counterparts at 298 K . As can be seen from Tables VI and VII, the thermal ellipsoids of each titanium atom at 140 K are oriented differently. For $\mathrm{Ti}(1)$ and $\mathrm{Ti}(3)$ the longest principle axis is along the pseudorutile c axis whereas for $\mathrm{Ti}(2)$ and $\mathrm{Ti}(4)$ the major axis makes an angle of about 25° with the pseudorutile c axis. At room temperature the smallest components of $\mathrm{Ti}(3)$ and $\mathrm{Ti}(4)$ are in the direction of the $\mathrm{Ti}(3)-\mathrm{Ti}(4)$ vector which is normal to the shared octahedral face. At 140 K this vector is no longer the minimum vibration even though the $\mathrm{Ti}(3)-\mathrm{Ti}(4)$ distance has decreased slightly. The thermal ellipsoids decrease in magnitude on passing to the lowest temperature phase (125 K). As in the intermediate phase the thermal vibration is anisotropic with the longest component along the pseudorutile c axis. The component along the $\mathrm{Ti}(3)-\mathrm{Ti}(4)$ vector is the smallest as it was at room temperature.

Conclusions

The structural studics suggest the following model for the three phases. At room temperature $\mathrm{Ti}_{4} \mathrm{O}_{7}$ is a metal and an average valence of 3.5 is observed. At the lowest temperatures $\mathrm{Ti}_{4} \mathrm{O}_{7}$ is an
insulator and the magnetic susceptibility is low suggesting a nonmagneticstate. This is compatible with the separation of charge into Ti^{4+} sites conlaining no d electrons and Ti^{3+} sites in which the d electrons have paired to form a nonmagnetic bond as illustrated in Fig. 3. In the intermediate phase the resistivity has increased by 10^{3} over the metallic phase and the magnetic susceptibility has dropped. There is no evidence for charge separation but the thermal factors are anomalously large. One can speculate that in the intermediate phase there is local charge separation and pair bonding but that there is no long-range order of the bonds. This would account for the large thermal vibrations in the bonding directions. The transition at $\sim 125 \mathrm{~K}$ would then be viewed as the onset of long-range order of the pairing.

The structure of the phase at 120 K is conceptually similar to that observed in $\mathrm{VO}_{2}+2.4$ at $\% \mathrm{Cr}$. At the metal-insulator transition, half of the vanadium atoms pair along the pseudorutile c axis, while the other half zigzag along the same direction (15). The significant difference between the two is that there is evidence for charge separation only in $\mathrm{Ti}_{4} \mathrm{O}_{7}$ and not in $\mathrm{VO}_{2}+2.4$ at $\% \mathrm{Cr}$. Also in the former the chains are broken by the crystallographic shear planes. Contrary to what has been speculated (9), no pairing of titanium atoms occurs across the shared octahedral faces, but instead the $\mathrm{Ti}(3)-\mathrm{Ti}(4)$ interatomic distance actually increases from $2.811 \AA$ at 298 K to 2.836 at 120 K . A similar increase from 2.697 to $2.746 \AA$ occurs when proceeding from metallic $\mathrm{V}_{2} \mathrm{O}_{3}$ to insulating $\mathrm{V}_{2} \mathrm{O}_{3}+3.8 \mathrm{at} . \% \mathrm{Cr}$ (16). Both these compounds have the corundum structure and the arrangement between the blocks in $\mathrm{Ti}_{4} \mathrm{O}_{7}$ is also corundum-like.

The charge localization occurring in $\mathrm{Ti}_{4} \mathrm{O}_{7}$ is in a way similar to the scheme proposed by Verwey et al. (17) for the metal-insulator transition which occurs in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ at 119 K . The ordering scheme in the insulating phase has the Fe^{3+} and Fe^{2+} atoms occupying the octahedral sites, forming ordered mutually perpendicular rows. Neutron diffraction studies done by Hamilton (18) showed that this model is compatible with his experimental data. However, more recent electron microscopy work by Yamada et al. (19) and neutron scattering work by Samuelsen et al. (20) on magnetite proved that the unit cell of the low temperature phase is at
least twice as large as that proposed by Verwey et al. Therefore, the ordering scheme must be more complicated than the one proposed by these authors. Thus the charge separation and pairing observed in $\mathrm{Ti}_{4} \mathrm{O}_{7}$ is probably the first clear example of a transition of the type envisioned by Verwey.

Acknowledgments

The authors wish to thank R. F. Bartholomew and W. B. White of the Materials Research Laboratory of Pennsylvania State University for kindly supplying the single crystals. We also like to thank T. M. Rice for many helpful discussions.

References

1. S. Andersson and A. Magnéli, Naturwissenschaften 43, 495 (1956).
2. S. Andersson, B. Collin, U. Kuylensturna, and A. Magnéli, Acta Chem. Scand. 11, 1461 (1957).
3. S. Andersson and L. Jahnberg, Ark. Kem. 21, 413 (1963).
4. R. F. Bartholomew and D. R. Frankl, Phys. Rev. 187, 828 (1969).
5. L. N. Mulay and W. J. Danley, J. Appl. Phys. 41, 877 (1970).
6. M. Marezio, P. D. Dernier, D. B. McWhan, and J. P. Remeika, Mater. Res. Bull. 5, 1015 (1970).
7. M. Marezio and P. D. Dernier, J. Solid State Chem. 3, 340 (1971).
8. H. Horiuchi, M. Tokonami, N. Morimoto, K. Nagasawa, Y. Bando, and T. Takada, Mater. Res. Bull. 6, 833 (1971).
9. J. B. Goodenough, J. Solid State Chem. 3, 490 (1971).
10. D. T. Cromer and J. T. Waber, Acta Crystallogr. 18, 104 (1965).
11. D. T. Cromer, Acta Crystallogr. 18, 17 (1965).
12. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. Sect. B 25, 925 (1969).
13. S. C. Abrahams and J. L. Bernstein, J. Chem. Phys. 55, 3206 (1971).
14. S. C. Abrahams, Phys. Rev. 130, 2230 (1963).
15. M. Marezio, D. B. McWhan, J. P. Remeika, and P. D. Dernier, Phys. Rev. B. 5, 2541 (1972),.
16. P. D. Dernier, J. Phys. Chem. Solids 31, 2569 (1970).
17. E. J. Verwey, P. W. Haayman, and Romeijn, J. Chem. Phys. 15, 181 (1947).
18. W. C. Hamilton, Phys. Rev. 110, 1050 (1958).
19. T. Yamada, K. Suzuki, and S. Chikazumi, Appl. Phys. Lett. 13, 172 (1968).
20. E. J. Samuelsen, E. J. Bleeker, L. Dobrzynski, and T. Riste, J. AppI. Phys. 39, 1114 (1968).

[^0]: ${ }^{1}$ A table of observed and calculated structure factors has been deposited as Document No. NAPS-01866 with the ASIS National Auxiliary Publications Service, C/O CCM Information Corp., 909 Third Avenue, New York, 10022. A copy may be secured by citing the document number. Advance payment is required. Make check or money order payable to ASIS-NAPS. (For current prices please check with NAPS.)

[^1]: ${ }^{a}$ Distances inside the rutile blocks.
 ${ }^{b}$ Distances between rutile blocks.

